3.1342 \(\int \frac{1}{(a+b x)^3 (c+d x)} \, dx\)

Optimal. Leaf size=82 \[ \frac{d^2 \log (a+b x)}{(b c-a d)^3}-\frac{d^2 \log (c+d x)}{(b c-a d)^3}+\frac{d}{(a+b x) (b c-a d)^2}-\frac{1}{2 (a+b x)^2 (b c-a d)} \]

[Out]

-1/(2*(b*c - a*d)*(a + b*x)^2) + d/((b*c - a*d)^2*(a + b*x)) + (d^2*Log[a + b*x])/(b*c - a*d)^3 - (d^2*Log[c +
 d*x])/(b*c - a*d)^3

________________________________________________________________________________________

Rubi [A]  time = 0.0454462, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {44} \[ \frac{d^2 \log (a+b x)}{(b c-a d)^3}-\frac{d^2 \log (c+d x)}{(b c-a d)^3}+\frac{d}{(a+b x) (b c-a d)^2}-\frac{1}{2 (a+b x)^2 (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^3*(c + d*x)),x]

[Out]

-1/(2*(b*c - a*d)*(a + b*x)^2) + d/((b*c - a*d)^2*(a + b*x)) + (d^2*Log[a + b*x])/(b*c - a*d)^3 - (d^2*Log[c +
 d*x])/(b*c - a*d)^3

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a+b x)^3 (c+d x)} \, dx &=\int \left (\frac{b}{(b c-a d) (a+b x)^3}-\frac{b d}{(b c-a d)^2 (a+b x)^2}+\frac{b d^2}{(b c-a d)^3 (a+b x)}-\frac{d^3}{(b c-a d)^3 (c+d x)}\right ) \, dx\\ &=-\frac{1}{2 (b c-a d) (a+b x)^2}+\frac{d}{(b c-a d)^2 (a+b x)}+\frac{d^2 \log (a+b x)}{(b c-a d)^3}-\frac{d^2 \log (c+d x)}{(b c-a d)^3}\\ \end{align*}

Mathematica [A]  time = 0.0639444, size = 67, normalized size = 0.82 \[ \frac{\frac{(b c-a d) (3 a d-b c+2 b d x)}{(a+b x)^2}+2 d^2 \log (a+b x)-2 d^2 \log (c+d x)}{2 (b c-a d)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^3*(c + d*x)),x]

[Out]

(((b*c - a*d)*(-(b*c) + 3*a*d + 2*b*d*x))/(a + b*x)^2 + 2*d^2*Log[a + b*x] - 2*d^2*Log[c + d*x])/(2*(b*c - a*d
)^3)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 81, normalized size = 1. \begin{align*}{\frac{{d}^{2}\ln \left ( dx+c \right ) }{ \left ( ad-bc \right ) ^{3}}}+{\frac{1}{ \left ( 2\,ad-2\,bc \right ) \left ( bx+a \right ) ^{2}}}+{\frac{d}{ \left ( ad-bc \right ) ^{2} \left ( bx+a \right ) }}-{\frac{{d}^{2}\ln \left ( bx+a \right ) }{ \left ( ad-bc \right ) ^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^3/(d*x+c),x)

[Out]

d^2/(a*d-b*c)^3*ln(d*x+c)+1/2/(a*d-b*c)/(b*x+a)^2+d/(a*d-b*c)^2/(b*x+a)-d^2/(a*d-b*c)^3*ln(b*x+a)

________________________________________________________________________________________

Maxima [B]  time = 1.0096, size = 273, normalized size = 3.33 \begin{align*} \frac{d^{2} \log \left (b x + a\right )}{b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}} - \frac{d^{2} \log \left (d x + c\right )}{b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}} + \frac{2 \, b d x - b c + 3 \, a d}{2 \,{\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2} +{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2}\right )} x^{2} + 2 \,{\left (a b^{3} c^{2} - 2 \, a^{2} b^{2} c d + a^{3} b d^{2}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^3/(d*x+c),x, algorithm="maxima")

[Out]

d^2*log(b*x + a)/(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3) - d^2*log(d*x + c)/(b^3*c^3 - 3*a*b^2*c^2
*d + 3*a^2*b*c*d^2 - a^3*d^3) + 1/2*(2*b*d*x - b*c + 3*a*d)/(a^2*b^2*c^2 - 2*a^3*b*c*d + a^4*d^2 + (b^4*c^2 -
2*a*b^3*c*d + a^2*b^2*d^2)*x^2 + 2*(a*b^3*c^2 - 2*a^2*b^2*c*d + a^3*b*d^2)*x)

________________________________________________________________________________________

Fricas [B]  time = 1.83099, size = 491, normalized size = 5.99 \begin{align*} -\frac{b^{2} c^{2} - 4 \, a b c d + 3 \, a^{2} d^{2} - 2 \,{\left (b^{2} c d - a b d^{2}\right )} x - 2 \,{\left (b^{2} d^{2} x^{2} + 2 \, a b d^{2} x + a^{2} d^{2}\right )} \log \left (b x + a\right ) + 2 \,{\left (b^{2} d^{2} x^{2} + 2 \, a b d^{2} x + a^{2} d^{2}\right )} \log \left (d x + c\right )}{2 \,{\left (a^{2} b^{3} c^{3} - 3 \, a^{3} b^{2} c^{2} d + 3 \, a^{4} b c d^{2} - a^{5} d^{3} +{\left (b^{5} c^{3} - 3 \, a b^{4} c^{2} d + 3 \, a^{2} b^{3} c d^{2} - a^{3} b^{2} d^{3}\right )} x^{2} + 2 \,{\left (a b^{4} c^{3} - 3 \, a^{2} b^{3} c^{2} d + 3 \, a^{3} b^{2} c d^{2} - a^{4} b d^{3}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^3/(d*x+c),x, algorithm="fricas")

[Out]

-1/2*(b^2*c^2 - 4*a*b*c*d + 3*a^2*d^2 - 2*(b^2*c*d - a*b*d^2)*x - 2*(b^2*d^2*x^2 + 2*a*b*d^2*x + a^2*d^2)*log(
b*x + a) + 2*(b^2*d^2*x^2 + 2*a*b*d^2*x + a^2*d^2)*log(d*x + c))/(a^2*b^3*c^3 - 3*a^3*b^2*c^2*d + 3*a^4*b*c*d^
2 - a^5*d^3 + (b^5*c^3 - 3*a*b^4*c^2*d + 3*a^2*b^3*c*d^2 - a^3*b^2*d^3)*x^2 + 2*(a*b^4*c^3 - 3*a^2*b^3*c^2*d +
 3*a^3*b^2*c*d^2 - a^4*b*d^3)*x)

________________________________________________________________________________________

Sympy [B]  time = 1.21214, size = 381, normalized size = 4.65 \begin{align*} \frac{d^{2} \log{\left (x + \frac{- \frac{a^{4} d^{6}}{\left (a d - b c\right )^{3}} + \frac{4 a^{3} b c d^{5}}{\left (a d - b c\right )^{3}} - \frac{6 a^{2} b^{2} c^{2} d^{4}}{\left (a d - b c\right )^{3}} + \frac{4 a b^{3} c^{3} d^{3}}{\left (a d - b c\right )^{3}} + a d^{3} - \frac{b^{4} c^{4} d^{2}}{\left (a d - b c\right )^{3}} + b c d^{2}}{2 b d^{3}} \right )}}{\left (a d - b c\right )^{3}} - \frac{d^{2} \log{\left (x + \frac{\frac{a^{4} d^{6}}{\left (a d - b c\right )^{3}} - \frac{4 a^{3} b c d^{5}}{\left (a d - b c\right )^{3}} + \frac{6 a^{2} b^{2} c^{2} d^{4}}{\left (a d - b c\right )^{3}} - \frac{4 a b^{3} c^{3} d^{3}}{\left (a d - b c\right )^{3}} + a d^{3} + \frac{b^{4} c^{4} d^{2}}{\left (a d - b c\right )^{3}} + b c d^{2}}{2 b d^{3}} \right )}}{\left (a d - b c\right )^{3}} + \frac{3 a d - b c + 2 b d x}{2 a^{4} d^{2} - 4 a^{3} b c d + 2 a^{2} b^{2} c^{2} + x^{2} \left (2 a^{2} b^{2} d^{2} - 4 a b^{3} c d + 2 b^{4} c^{2}\right ) + x \left (4 a^{3} b d^{2} - 8 a^{2} b^{2} c d + 4 a b^{3} c^{2}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**3/(d*x+c),x)

[Out]

d**2*log(x + (-a**4*d**6/(a*d - b*c)**3 + 4*a**3*b*c*d**5/(a*d - b*c)**3 - 6*a**2*b**2*c**2*d**4/(a*d - b*c)**
3 + 4*a*b**3*c**3*d**3/(a*d - b*c)**3 + a*d**3 - b**4*c**4*d**2/(a*d - b*c)**3 + b*c*d**2)/(2*b*d**3))/(a*d -
b*c)**3 - d**2*log(x + (a**4*d**6/(a*d - b*c)**3 - 4*a**3*b*c*d**5/(a*d - b*c)**3 + 6*a**2*b**2*c**2*d**4/(a*d
 - b*c)**3 - 4*a*b**3*c**3*d**3/(a*d - b*c)**3 + a*d**3 + b**4*c**4*d**2/(a*d - b*c)**3 + b*c*d**2)/(2*b*d**3)
)/(a*d - b*c)**3 + (3*a*d - b*c + 2*b*d*x)/(2*a**4*d**2 - 4*a**3*b*c*d + 2*a**2*b**2*c**2 + x**2*(2*a**2*b**2*
d**2 - 4*a*b**3*c*d + 2*b**4*c**2) + x*(4*a**3*b*d**2 - 8*a**2*b**2*c*d + 4*a*b**3*c**2))

________________________________________________________________________________________

Giac [B]  time = 1.06785, size = 223, normalized size = 2.72 \begin{align*} \frac{b d^{2} \log \left ({\left | b x + a \right |}\right )}{b^{4} c^{3} - 3 \, a b^{3} c^{2} d + 3 \, a^{2} b^{2} c d^{2} - a^{3} b d^{3}} - \frac{d^{3} \log \left ({\left | d x + c \right |}\right )}{b^{3} c^{3} d - 3 \, a b^{2} c^{2} d^{2} + 3 \, a^{2} b c d^{3} - a^{3} d^{4}} - \frac{b^{2} c^{2} - 4 \, a b c d + 3 \, a^{2} d^{2} - 2 \,{\left (b^{2} c d - a b d^{2}\right )} x}{2 \,{\left (b c - a d\right )}^{3}{\left (b x + a\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^3/(d*x+c),x, algorithm="giac")

[Out]

b*d^2*log(abs(b*x + a))/(b^4*c^3 - 3*a*b^3*c^2*d + 3*a^2*b^2*c*d^2 - a^3*b*d^3) - d^3*log(abs(d*x + c))/(b^3*c
^3*d - 3*a*b^2*c^2*d^2 + 3*a^2*b*c*d^3 - a^3*d^4) - 1/2*(b^2*c^2 - 4*a*b*c*d + 3*a^2*d^2 - 2*(b^2*c*d - a*b*d^
2)*x)/((b*c - a*d)^3*(b*x + a)^2)